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1. 

When the mass of the spring Ms is not neglected in the free vibration of the spring
with one end fixed and a lumped mass M attached at the other end, the spring’s
effective mass aMs might be added to the lumped mass M for the simplification
to the case of the vibration of a system with one degree of freedom. The following
conclusion based on the approximate method developed by Lord Rayleigh [1] is
well known. The spring’s effective mass aMs is found to be one-third the mass of
the spring Ms . Adding this to the lumped mass M, the revised natural circular
frequency v1/3 is [2–4]

v1/3 =zk/[M+(1/3)Ms ], (1)

where k is the spring constant.
The free longitudinal vibration of a rod with one end fixed and a lumped

mass M attached at the other end simulates the free vibration of the spring with
the same boundary condition. These simulations are described in Timoshenko’s
literature [2].

Indeed, it is described in reference [2] that the ratio a of the spring’s effective
mass to the spring mass is one-third. However, the ratio h of the spring mass Ms

to lumped mass M becomes large, when the ratio a of spring effective mass to
spring mass would be greater than one-third. In this paper, the a–h relation
between the spring effective mass to spring mass ratio a in the free vibration of
the spring with one end fixed and a lumped mass attached at the other end and
the spring mass to lumped mass ratio h is examined numerically by the free
vibration of the fixed-lumped mass bar which is the simulation of the present
problem.

2.        

The differential equation of the longitudinal vibration of a bar is

12u/1x2 = (1/a2) 12u/1t2, (2)

where x denotes the co-ordinate and t denotes the time, a is the acoustic velocity
in the bar, a=zE/r, E denotes the modulus of elasticity and r the density. The
differential equation of motion for a typical element of the bar may be written as

mrü dx− ru0 dx=0, (3)
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where the dots and primes signify differentiation of the displacement u with respect
to t and x, respectively. The term mr = rA represents the mass of the bar per unit
length, and the quantity r=EA is its axial rigidity. When the bar vibrates in its
ith natural mode, it has the harmonic motion

ui =Xi (Ai cos vit+Bi sin vit). (4)

Substitution of equation (4) into equation (3) and rearrangement of terms
produces

rX0i +mrv
2
i Xi =0,

for which the solution has the form

Xi =Ci cos (vix/a)+Di sin (vix/a).

Let us consider the free longitudinal vibration of the prismatic bar with one end
fixed and a lumped mass M attached at the other end. The boundary condition
for the bar may be written as

u=x=0 =0

S=x= l = ru'=x= l =−Mü=x= l7 , (5)

where S is the axial force. The frequency equation for the case under consideration
is as follows

ji tan ji = h, (6)

where

ji =vil/a, h=mrl/M.

The fundamental mode of vibration is usually of greatest interest: for various
values of the mass ratio h the corresponding value of j1 (for the first mode) are
given in references [2, 3].

3.        

The free vibration of the spring with one end fixed and a lumped mass M
attached at the other end where the spring mass is Ms = bl is simulated by the
free longitudinal vibration of the fixed-lumped mass prismatic rod. The spring
constant k of the former corresponds to the axial rigidity of the rod EA/l of the
latter,

k=EA/l.

The spring mass Ms = bl to lumped mass M ratio h corresponds to the rod mass
mrl to block mass M ratio h (see Figure 1),

bl/M=mrl/M= h.
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Figure 1. The free vibration of a bar with lumped mass at the end simulates the vibration of the
spring with mass at the end. (a) The fixed-lumped mass prismatic rod. (b) The spring, one end fixed
and a lumped mass attached at the other end.

If the mass of the bar mrl is small compared to that of the attached mass M,
the values of h and j1 will both be small and equation (6) can be simplified by
taking tan j1 3 j1. Then one has

j1 =v1l/a3zmrl/M=zh. (7)

Hence,

v1 3zEA/Ml.

For the corresponding fixed-lumped mass spring system,

v1 =zk/M. (8)

This solution corresponds to the case in which the spring mass is zero.
A better approximation will be obtained by substituting

tan j1 3 j1 + j3
1 /3 (9)

into equation (6). Then

j1(j1 + j3
1 /3)= h

or

j1 =zh/(1+ j2
1 /3). (10)
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Substituting the first approximation (7) for j1 into the right side of this equation,
one has

j1 =zh/(1+ h/3).

This solution corresponds to the relation

v1 =zk/[M+(1/3)Ms ]. (11)

It can be concluded that a better approximation is obtained by adding one-third
of the spring mass Ms to the lumped mass M. This is coincident with the well
known approximate solution obtained by using Rayleigh’s method.

4.     ’ 

The frequency equation for the fundamental mode

j1 tan j1 = h (12)

is solved numerically by using Newton’s method. The relations of j1 and h are
shown in Figure 2. Both the scales of j1 and h are logarithmic. The limiting values
of j1 are as follows:

for h:0, j1:0 and for h:a, j1:p/2.

For the application to obtain the frequency of the fixed-lump mass spring system
vibration, the relation of the spring’s effective mass aMs to spring mass Ms ratio

Figure 2. The root j1 of the characteristic equation versus the rod mass to lumped mass ratio h.
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a and the Ms to M ratio h is examined as follows. Since the circular frequency v1

is obtained by adding a of the bar or spring to the lumped mass, then

v1 =zEA/[M(1+ ah)l] (13)

corresponds to

v1 =zk/[M(1+ ah)], (14)

and

j1 =v1l/a.

Then

j1a/l=zEA/[M(1+ ah)l].

Therefore

1+ ah=(1/j2
1 )(l2/a2)(EA/Ml)

= (1/j2
1 )(rAl/M)

= (1/j2
1 )(mrl/M)

= (1/j2
1 )h.

one obtains

a=(1/j2
1 )− (1/h). (15)

Figure 3. The spring’s effective mass to lumped mass ratio a versus the spring mass to lumped
mass ratio h.



1.15

1.05

1.00

1.10

0.10.01 1 10 100

1/
3 

/
a

ct

    569

Figure 4. The v1/3/vact ratio versus the spring mass to lumped mass ratio h.

The relation of the ratio a of the spring’s effective mass aMs to the spring mass
Ms and the ratio h of the spring mass Ms to the lumped mass M is shown in
Figure 3. The limiting values of a are as follows:

for h:0, a:1/3 and for h:a, a:(2/p)2.

The circular frequency vact is obtained

vact =zk/(M+ aMs ), (16)

T 1

h j a v1/3/vact

0·01 0·0998 0·334 1·000
0·1 0·311 0·336 1·000
0·3 0·522 0·340 1·001
0·5 0·653 0·343 1·002
0·7 0·751 0·347 1·004
0·9 0·827 0·350 1·006
1 0·860 0·351 1·007
1·5 0·988 0·357 1·012
2 1·077 0·362 1·017
3 1·193 0·370 1·027
4 1·265 0·375 1·035
5 1·314 0·379 1·042

10 1·429 0·390 1·063
20 1·496 0·397 1·080

100 1·555 0·403 1·097
a p/2 (2/p)2 2z3/p



   570

and equation (1), i.e.,

v1/3 =zk/[M+(1/3)Ms ]

is a well known approximate result. The relation of the v1/3/vact ratio and the
spring mass Ms to lumped mass M ratio h is shown in Figure 4. It is seen that
v1/3 is a good approximation of the frequency of the fixed-lumped mass spring
system, when h is small. The limiting values of v1/3/vact are as follows:

for h:0, v1/3/vact:1 and for h:a, v1/3/vact:2z3/p.

The relation between the root j1, the effective spring’s mass aMs to spring mass
Ms ratio a and the v1/3/vact ratio and the spring mass Ms to lumped mass ratio h

are shown in Table 1, obtained by numerical calculations.

5. 

The free longitudinal vibration of the fixed-lumped mass rod is examined
numerically in order to estimate the spring’s effective mass in the free vibration
of the fixed-lumped mass spring system. The relation between the spring’s effective
mass to spring mass ratio and the spring mass to lumped mass ratio is examined.
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